Odd length: Odd diagrams and descent classes

نویسندگان

چکیده

We define and study odd analogues of classical geometric combinatorial objects associated to permutations, namely Schubert varieties, diagrams, inversion sets. show that there is a bijection between sets permutations acyclic orientations the Turán graph, dimension variety permutation length permutation, give several necessary conditions for subset [n]×[n] be diagram permutation. also sign-twisted generating function over descent classes symmetric groups.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Barker sequences of odd length

A Barker sequence is a binary sequence for which all non-trivial aperiodic autocorrelations are at most 1 in magnitude. An old conjecture due to Turyn asserts that there is no Barker sequence of length greater than 13. In 1961, Turyn and Storer gave an elementary, though somewhat complicated, proof that this conjecture holds for odd lengths. We give a new and simpler proof of this result.

متن کامل

Isospin odd πK scattering length

We make use of the chiral two–loop representation of the πK scattering amplitude [J. Bijnens, P. Dhonte and P. Talavera, JHEP 0405 (2004) 036] to investigate the isospin odd scattering length at next-to-next-to-leading order in the SU(3) expansion. This scattering length is protected against contributions of m s in the chiral expansion, in the sense that the corrections to the current algebra r...

متن کامل

Quaternary Golay sequence pairs II: odd length

A 4-phase Golay sequence pair of length s ≡ 5 (mod 8) is constructed from a Barker sequence of the same length whose even-indexed elements are prescribed. This explains the origin of the 4-phase Golay seed pairs of length 5 and 13. The construction cannot produce new 4-phase Golay sequence pairs, because there are no Barker sequences of odd length greater than 13. A partial converse to the cons...

متن کامل

Odd Independent Transversals are Odd

We put the final piece into a puzzle first introduced by Bollobás, Erdős and Szemerédi in 1975. For arbitrary positive integers n and r we determine the largest integer ∆ = ∆(r, n), for which any r-partite graph with partite sets of size n and of maximum degree less than ∆ has an independent transversal. This value was known for all even r. Here we determine the value for odd r and find that ∆(...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2021

ISSN: ['1872-681X', '0012-365X']

DOI: https://doi.org/10.1016/j.disc.2021.112308